Chapter 4: Problem 87
Let \(x>0\) and \(b>0 .\) Show that \(\int_{-b}^{b} e^{x t} d t=\frac{2 \sinh b x}{x}\).
Chapter 4: Problem 87
Let \(x>0\) and \(b>0 .\) Show that \(\int_{-b}^{b} e^{x t} d t=\frac{2 \sinh b x}{x}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeFind \(F^{\prime}(x)\). $$ F(x)=\int_{0}^{\sin x} \sqrt{t} d t $$
Solve the differential equation. \(\frac{d y}{d x}=\frac{1-2 x}{4 x-x^{2}}\)
In Exercises 83 and \(84,\) use the equation of the tractrix \(y=a \operatorname{sech}^{-1} \frac{x}{a}-\sqrt{a^{2}-x^{2}}, \quad a>0\) Find \(d y / d x\).
(a) integrate to find \(F\) as a function of \(x\) and (b) demonstrate the Second Fundamental Theorem of Calculus by differentiating the result in part (a). $$ F(x)=\int_{\pi / 3}^{x} \sec t \tan t d t $$
In Exercises 31 and \(32,\) show that the function satisfies the differential equation. \(y=a \sinh x\) \(y^{\prime \prime \prime}-y^{\prime}=0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.