Chapter 4: Problem 86
Show that \(\arctan (\sinh x)=\arcsin (\tanh x)\).
Chapter 4: Problem 86
Show that \(\arctan (\sinh x)=\arcsin (\tanh x)\).
All the tools & learning materials you need for study success - in one app.
Get started for free(a) integrate to find \(F\) as a function of \(x\) and (b) demonstrate the Second Fundamental Theorem of Calculus by differentiating the result in part (a). $$ F(x)=\int_{4}^{x} \sqrt{t} d t $$
Linear and Quadratic Approximations In Exercises 33 and 34 use a computer algebra system to find the linear approximation \(P_{1}(x)=f(a)+f^{\prime}(a)(x-a)\) and the quadratic approximation \(P_{2}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}\) of the function \(f\) at \(x=a\). Use a graphing utility to graph the function and its linear and quadratic approximations. \(f(x)=\tanh x, \quad a=0\)
In Exercises 31 and \(32,\) show that the function satisfies the differential equation. \(y=a \sinh x\) \(y^{\prime \prime \prime}-y^{\prime}=0\)
A horizontal plane is ruled with parallel lines 2 inches apart. A two-inch needle is tossed randomly onto the plane. The probability that the needle will touch a line is \(P=\frac{2}{\pi} \int_{0}^{\pi / 2} \sin \theta d \theta\) where \(\theta\) is the acute angle between the needle and any one of the parallel lines. Find this probability.
Find \(F^{\prime}(x)\). $$ F(x)=\int_{0}^{x^{2}} \sin \theta^{2} d \theta $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.