Chapter 4: Problem 84
Find \(F^{\prime}(x)\). $$ F(x)=\int_{0}^{x^{2}} \sin \theta^{2} d \theta $$
Chapter 4: Problem 84
Find \(F^{\prime}(x)\). $$ F(x)=\int_{0}^{x^{2}} \sin \theta^{2} d \theta $$
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the limit. \(\lim _{x \rightarrow \infty} \operatorname{sech} x\)
In Exercises \(27-30,\) find any relative extrema of the function. Use a graphing utility to confirm your result. \(f(x)=\sin x \sinh x-\cos x \cosh x, \quad-4 \leq x \leq 4\)
Find the integral. \(\int x \operatorname{csch}^{2} \frac{x^{2}}{2} d x\)
Verify the differentiation formula. \(\frac{d}{d x}\left[\operatorname{sech}^{-1} x\right]=\frac{-1}{x \sqrt{1-x^{2}}}\)
Find the indefinite integral using the formulas of Theorem 4.24 \(\int \frac{1}{\sqrt{x} \sqrt{1+x}} d x\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.