Chapter 4: Problem 81
Find \(F^{\prime}(x)\). $$ F(x)=\int_{0}^{\sin x} \sqrt{t} d t $$
Chapter 4: Problem 81
Find \(F^{\prime}(x)\). $$ F(x)=\int_{0}^{\sin x} \sqrt{t} d t $$
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the integral. \(\int \cosh ^{2}(x-1) \sinh (x-1) d x\)
Solve the differential equation. \(\frac{d y}{d x}=\frac{1}{(x-1) \sqrt{-4 x^{2}+8 x-1}}\)
In Exercises 83 and \(84,\) use the equation of the tractrix \(y=a \operatorname{sech}^{-1} \frac{x}{a}-\sqrt{a^{2}-x^{2}}, \quad a>0\) Find \(d y / d x\).
Verify the differentiation formula. \(\frac{d}{d x}\left[\cosh ^{-1} x\right]=\frac{1}{\sqrt{x^{2}-1}}\)
Find any relative extrema of the function. Use a graphing utility to confirm your result. \(f(x)=x \sinh (x-1)-\cosh (x-1)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.