Chapter 4: Problem 79
In Exercises \(79-84,\) find \(F^{\prime}(x)\). $$ F(x)=\int_{x}^{x+2}(4 t+1) d t $$
Chapter 4: Problem 79
In Exercises \(79-84,\) find \(F^{\prime}(x)\). $$ F(x)=\int_{x}^{x+2}(4 t+1) d t $$
All the tools & learning materials you need for study success - in one app.
Get started for freeLinear and Quadratic Approximations In Exercises 33 and 34 use a computer algebra system to find the linear approximation \(P_{1}(x)=f(a)+f^{\prime}(a)(x-a)\) and the quadratic approximation \(P_{2}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}\) of the function \(f\) at \(x=a\). Use a graphing utility to graph the function and its linear and quadratic approximations. \(f(x)=\tanh x, \quad a=0\)
Find \(F^{\prime}(x)\). $$ F(x)=\int_{-x}^{x} t^{3} d t $$
In Exercises 35 and \(36,\) a model for a power cable suspended between two towers is given. (a) Graph the model, (b) find the heights of the cable at the towers and at the midpoint between the towers, and (c) find the slope of the model at the point where the cable meets the right-hand tower. \(y=10+15 \cosh \frac{x}{15}, \quad-15 \leq x \leq 15\)
Evaluate the integral in terms of (a) natural logarithms and (b) inverse hyperbolic functions. \(\int_{-1 / 2}^{1 / 2} \frac{d x}{1-x^{2}}\)
Evaluate the integral. \(\int_{0}^{4} \frac{1}{\sqrt{25-x^{2}}} d x\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.