Chapter 4: Problem 78
Use the Second Fundamental Theorem of Calculus to find \(F^{\prime}(x)\). $$ F(x)=\int_{0}^{x} \sec ^{3} t d t $$
Chapter 4: Problem 78
Use the Second Fundamental Theorem of Calculus to find \(F^{\prime}(x)\). $$ F(x)=\int_{0}^{x} \sec ^{3} t d t $$
All the tools & learning materials you need for study success - in one app.
Get started for freeVerify each rule by differentiating. Let \(a>0\). $$ \int \frac{d u}{u \sqrt{u^{2}-a^{2}}}=\frac{1}{a} \operatorname{arcsec} \frac{|u|}{a}+C $$
Consider a particle moving along the \(x\) -axis where \(x(t)\) is the position of the particle at time \(t, x^{\prime}(t)\) is its velocity, and \(\int_{a}^{b}\left|x^{\prime}(t)\right| d t\) is the distance the particle travels in the interval of time. A particle moves along the \(x\) -axis with velocity \(v(t)=1 / \sqrt{t}\) \(t > 0\). At time \(t=1,\) its position is \(x=4\). Find the total distance traveled by the particle on the interval \(1 \leq t \leq 4\).
Solve the differential equation. \(\frac{d y}{d x}=\frac{1-2 x}{4 x-x^{2}}\)
Linear and Quadratic Approximations In Exercises 33 and 34 use a computer algebra system to find the linear approximation \(P_{1}(x)=f(a)+f^{\prime}(a)(x-a)\) and the quadratic approximation \(P_{2}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}\) of the function \(f\) at \(x=a\). Use a graphing utility to graph the function and its linear and quadratic approximations. \(f(x)=\cosh x, \quad a=0\)
Consider the integral \(\int \frac{1}{\sqrt{6 x-x^{2}}} d x\). (a) Find the integral by completing the square of the radicand. (b) Find the integral by making the substitution \(u=\sqrt{x}\). (c) The antiderivatives in parts (a) and (b) appear to be significantly different. Use a graphing utility to graph each antiderivative in the same viewing window and determine the relationship between them. Find the domain of each.
What do you think about this solution?
We value your feedback to improve our textbook solutions.