Chapter 4: Problem 76
Solve the differential equation. \(\frac{d y}{d x}=\frac{1}{(x-1) \sqrt{-4 x^{2}+8 x-1}}\)
Chapter 4: Problem 76
Solve the differential equation. \(\frac{d y}{d x}=\frac{1}{(x-1) \sqrt{-4 x^{2}+8 x-1}}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises \(69-74\), find the indefinite integral using the formulas of Theorem 4.24 \(\int \frac{1}{\sqrt{1+e^{2 x}}} d x\)
Find the integral. \(\int \frac{\cosh x}{\sqrt{9-\sinh ^{2} x}} d x\)
A horizontal plane is ruled with parallel lines 2 inches apart. A two-inch needle is tossed randomly onto the plane. The probability that the needle will touch a line is \(P=\frac{2}{\pi} \int_{0}^{\pi / 2} \sin \theta d \theta\) where \(\theta\) is the acute angle between the needle and any one of the parallel lines. Find this probability.
Linear and Quadratic Approximations In Exercises 33 and 34 use a computer algebra system to find the linear approximation \(P_{1}(x)=f(a)+f^{\prime}(a)(x-a)\) and the quadratic approximation \(P_{2}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}\) of the function \(f\) at \(x=a\). Use a graphing utility to graph the function and its linear and quadratic approximations. \(f(x)=\tanh x, \quad a=0\)
Prove or disprove that there is at least one straight line normal to the graph of \(y=\cosh x\) at a point \((a, \cosh a)\) and also normal to the graph of \(y=\sinh x\) at a point \((c, \sinh c)\). [At a point on a graph, the normal line is the perpendicular to the tangent at that point. Also, \(\cosh x=\left(e^{x}+e^{-x}\right) / 2\) and \(\left.\sinh x=\left(e^{x}-e^{-x}\right) / 2 .\right]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.