Chapter 4: Problem 72
Evaluate the definite integral. Use a graphing utility to verify your result. $$ \int_{1}^{2} e^{1-x} d x $$
Chapter 4: Problem 72
Evaluate the definite integral. Use a graphing utility to verify your result. $$ \int_{1}^{2} e^{1-x} d x $$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises \(63-68,\) find the limit. \(\lim _{x \rightarrow \infty} \sinh x\)
Find \(F^{\prime}(x)\). $$ F(x)=\int_{-x}^{x} t^{3} d t $$
Think About It Determine whether the Dirichlet function $$f(x)=\left\\{\begin{array}{ll}1, & x \text { is rational } \\ 0, & x \text { is irrational }\end{array}\right.$$ is integrable on the interval [0,1] . Explain.
Find the integral. \(\int \operatorname{sech}^{2}(2 x-1) d x\)
Verify the differentiation formula. \(\frac{d}{d x}\left[\operatorname{sech}^{-1} x\right]=\frac{-1}{x \sqrt{1-x^{2}}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.