Chapter 4: Problem 72
(a) integrate to find \(F\) as a function of \(x\) and (b) demonstrate the Second Fundamental Theorem of Calculus by differentiating the result in part (a). $$ F(x)=\int_{1}^{x} \frac{1}{t} d t $$
Chapter 4: Problem 72
(a) integrate to find \(F\) as a function of \(x\) and (b) demonstrate the Second Fundamental Theorem of Calculus by differentiating the result in part (a). $$ F(x)=\int_{1}^{x} \frac{1}{t} d t $$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises \(79-84,\) find \(F^{\prime}(x)\). $$ F(x)=\int_{x}^{x+2}(4 t+1) d t $$
Use the Second Fundamental Theorem of Calculus to find \(F^{\prime}(x)\). $$ F(x)=\int_{-1}^{x} \sqrt{t^{4}+1} d t $$
Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. If \(f\) is continuous on \([a, b]\), then \(f\) is integrable on \([a, b]\).
Find the integral. \(\int \frac{x}{x^{4}+1} d x\)
Prove that \(\tanh ^{-1} x=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right),
\quad-1
What do you think about this solution?
We value your feedback to improve our textbook solutions.