Chapter 4: Problem 69
Evaluate the definite integral. Use a graphing utility to verify your result. $$ \int_{-1}^{1} x\left(x^{2}+1\right)^{3} d x $$
Chapter 4: Problem 69
Evaluate the definite integral. Use a graphing utility to verify your result. $$ \int_{-1}^{1} x\left(x^{2}+1\right)^{3} d x $$
All the tools & learning materials you need for study success - in one app.
Get started for freeUse the Second Fundamental Theorem of Calculus to find \(F^{\prime}(x)\). $$ F(x)=\int_{1}^{x} \sqrt[4]{t} d t $$
Find the derivative of the function. \(y=2 x \sinh ^{-1}(2 x)-\sqrt{1+4 x^{2}}\)
In Exercises 83 and \(84,\) use the equation of the tractrix \(y=a \operatorname{sech}^{-1} \frac{x}{a}-\sqrt{a^{2}-x^{2}}, \quad a>0\) Find \(d y / d x\).
Find the indefinite integral using the formulas of Theorem 4.24 \(\int \frac{1}{1-4 x-2 x^{2}} d x\)
Find \(F^{\prime}(x)\). $$ F(x)=\int_{2}^{x^{2}} \frac{1}{t^{3}} d t $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.