Chapter 4: Problem 63
Show that the two formulas are equivalent. $$ \begin{array}{l} \int \tan x d x=-\ln |\cos x|+C \\ \int \tan x d x=\ln |\sec x|+C \end{array} $$
Chapter 4: Problem 63
Show that the two formulas are equivalent. $$ \begin{array}{l} \int \tan x d x=-\ln |\cos x|+C \\ \int \tan x d x=\ln |\sec x|+C \end{array} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the integral. \(\int x \operatorname{csch}^{2} \frac{x^{2}}{2} d x\)
Evaluate the integral. \(\int_{0}^{\sqrt{2} / 4} \frac{2}{\sqrt{1-4 x^{2}}} d x\)
Verify the differentiation formula. \(\frac{d}{d x}\left[\cosh ^{-1} x\right]=\frac{1}{\sqrt{x^{2}-1}}\)
Find the integral. \(\int \frac{x}{x^{4}+1} d x\)
Evaluate the integral in terms of (a) natural logarithms and (b) inverse hyperbolic functions. \(\int_{-1 / 2}^{1 / 2} \frac{d x}{1-x^{2}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.