Chapter 4: Problem 52
Evaluate the integral. \(\int_{0}^{\ln 2} 2 e^{-x} \cosh x d x\)
Chapter 4: Problem 52
Evaluate the integral. \(\int_{0}^{\ln 2} 2 e^{-x} \cosh x d x\)
All the tools & learning materials you need for study success - in one app.
Get started for freeUse the Second Fundamental Theorem of Calculus to find \(F^{\prime}(x)\). $$ F(x)=\int_{0}^{x} t \cos t d t $$
Linear and Quadratic Approximations In Exercises 33 and 34 use a computer algebra system to find the linear approximation \(P_{1}(x)=f(a)+f^{\prime}(a)(x-a)\) and the quadratic approximation \(P_{2}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}\) of the function \(f\) at \(x=a\). Use a graphing utility to graph the function and its linear and quadratic approximations. \(f(x)=\tanh x, \quad a=0\)
Verify the differentiation formula. \(\frac{d}{d x}\left[\cosh ^{-1} x\right]=\frac{1}{\sqrt{x^{2}-1}}\)
Find the integral. \(\int \frac{\cosh x}{\sinh x} d x\)
Find the limit. \(\lim _{x \rightarrow 0^{-}} \operatorname{coth} x\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.