Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Evaluate the integral. \(\int_{0}^{\ln 2} 2 e^{-x} \cosh x d x\)

Short Answer

Expert verified
The value of the integral is \( \ln2 +\frac{3}{8} \).

Step by step solution

01

Identify function form

The given integral, \( \int_{0}^{\ln 2} 2e^{-x} \cosh x dx \), involves the product of an exponential function and a hyperbolic cosine function.
02

Recognize the hyperbolic cosine

The hyperbolic cosine function \( \cosh x \) can be expressed in terms of exponential functions as \( \cosh x = \frac{e^{x} + e^{-x}}{2} \)
03

Substitute and simplify

Substitute \(\cosh x\) in this form into the integral. The result is \( \int_{0}^{\ln 2} 2e^{-x} \left(\frac{e^{x} + e^{-x}}{02}\right) dx \therefore \int_{0}^{\ln 2} e^{-x +x} + e^{-x - x} dx \), which simplifies to \( \int_{0}^{\ln 2} e^{0} + e^{-2x} dx = \int_{0}^{\ln 2} 1 + e^{-2x} dx \)
04

Compute the integral

To compute this integral, use the power rule for the first term and the rule for integrating an exponential function for the second term: \( \left[ x -\frac{1}{2}e^{-2x} \right]_{0}^{\ln 2} \)
05

Evaluate the Definite Integral

Substitute the values of the limits \( \ln2 \) and \(0\) to evaluate the integral: \( \left[ (\ln2 -\frac{1}{2}e^{-2 \ln 2} ) - (0 -\frac{1}{2}e^{0}) \right] = \ln2 -\frac{1}{2}e^{-2 \ln 2} +\frac{1}{2} \)
06

Simplify Result

Simplify the result \( \ln2 -\frac{1}{2}e^{-2 \ln 2} +\frac{1}{2}= \ln2 -\frac{1}{2} \cdot \frac{1}{2^2} +\frac{1}{2}= \ln2 -\frac{1}{8} +\frac{1}{2}= \ln2 +\frac{3}{8}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free