Chapter 4: Problem 45
Find the integral. \(\int \frac{x}{x^{4}+1} d x\)
Short Answer
Expert verified
The integral \(\int \frac{x}{x^{4}+1}d x = \frac{1}{4}\ln |x^{4}+1|\)
Chapter 4: Problem 45
Find the integral. \(\int \frac{x}{x^{4}+1} d x\)
All the tools & learning materials you need for study success - in one app.
Get started for freeShow that \(\arctan (\sinh x)=\arcsin (\tanh x)\).
Find the derivative of the function. \(y=x \tanh ^{-1} x+\ln \sqrt{1-x^{2}}\)
Find the limit. \(\lim _{x \rightarrow \infty} \operatorname{sech} x\)
Evaluate the integral. \(\int_{0}^{4} \frac{1}{25-x^{2}} d x\)
Determine \(\lim _{n \rightarrow \infty} \frac{1}{n^{3}}\left[1^{2}+2^{2}+3^{2}+\cdots+n^{2}\right]\) by using an appropriate Riemann sum.
What do you think about this solution?
We value your feedback to improve our textbook solutions.