Chapter 4: Problem 44
Find the integral. \(\int \frac{\cosh x}{\sqrt{9-\sinh ^{2} x}} d x\)
Chapter 4: Problem 44
Find the integral. \(\int \frac{\cosh x}{\sqrt{9-\sinh ^{2} x}} d x\)
All the tools & learning materials you need for study success - in one app.
Get started for freeUse the Second Fundamental Theorem of Calculus to find \(F^{\prime}(x)\). $$ F(x)=\int_{1}^{x} \sqrt[4]{t} d t $$
Show that \(\arctan (\sinh x)=\arcsin (\tanh x)\).
Find the integral. \(\int \frac{\sinh x}{1+\sinh ^{2} x} d x\)
Verify the differentiation formula. \(\frac{d}{d x}\left[\operatorname{sech}^{-1} x\right]=\frac{-1}{x \sqrt{1-x^{2}}}\)
Verify each rule by differentiating. Let \(a>0\). $$ \int \frac{d u}{\sqrt{a^{2}-u^{2}}}=\arcsin \frac{u}{a}+C $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.