Chapter 4: Problem 42
Use the differential equation and the specified initial condition to find \(y .\) $$ \begin{array}{l} \frac{d y}{d x}=\frac{1}{4+x^{2}} \\ y(2)=\pi \end{array} $$
Chapter 4: Problem 42
Use the differential equation and the specified initial condition to find \(y .\) $$ \begin{array}{l} \frac{d y}{d x}=\frac{1}{4+x^{2}} \\ y(2)=\pi \end{array} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises \(27-30,\) find any relative extrema of the function. Use a graphing utility to confirm your result. \(f(x)=\sin x \sinh x-\cos x \cosh x, \quad-4 \leq x \leq 4\)
Find the integral. \(\int \frac{x}{x^{4}+1} d x\)
Let \(x>0\) and \(b>0 .\) Show that \(\int_{-b}^{b} e^{x t} d t=\frac{2 \sinh b x}{x}\).
Find \(F^{\prime}(x)\). $$ F(x)=\int_{0}^{x^{2}} \sin \theta^{2} d \theta $$
Find the integral. \(\int \frac{\cosh x}{\sinh x} d x\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.