Chapter 4: Problem 42
Numerical Reasoning Consider a trapezoid of area 4 bounded by the graphs of \(y=x, y=0, x=1,\) and \(x=3\) (a) Sketch the region. (b) Divide the interval [1,3] into \(n\) subintervals of equal width and show that the endpoints are \(1<1+1\left(\frac{2}{n}\right)<\cdots<1+(n-1)\left(\frac{2}{n}\right)<1+n\left(\frac{2}{n}\right)\) (c) Show that \(s(n)=\sum_{i=1}^{n}\left[1+(i-1)\left(\frac{2}{n}\right)\right]\left(\frac{2}{n}\right)\) (d) \(S(n)=\sum_{i=1}^{n}\left[1+i\left(\frac{2}{n}\right)\right]\left(\frac{2}{n}\right)\) that Show (e) Complete the table. \begin{tabular}{|l|l|l|l|l|} \hline\(n\) & 5 & 10 & 50 & 100 \\ \hline\(s(n)\) & & & & \\ \hline\(S(n)\) & & & & \\ \hline \end{tabular} (f) Show that \(\lim _{n \rightarrow \infty} s(n)=\lim _{n \rightarrow \infty} S(n)=4\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.