Chapter 4: Problem 4
Find the integral. $$ \int \frac{1}{4+(x-1)^{2}} d x $$
Chapter 4: Problem 4
Find the integral. $$ \int \frac{1}{4+(x-1)^{2}} d x $$
All the tools & learning materials you need for study success - in one app.
Get started for freeDiscuss several ways in which the hyperbolic functions are similar to the trigonometric functions.
Use the Second Fundamental Theorem of Calculus to find \(F^{\prime}(x)\). $$ F(x)=\int_{0}^{x} t \cos t d t $$
Verify the differentiation formula. \(\frac{d}{d x}\left[\cosh ^{-1} x\right]=\frac{1}{\sqrt{x^{2}-1}}\)
Consider the function \(F(x)=\frac{1}{2} \int_{x}^{x+2} \frac{2}{t^{2}+1} d t\) (a) Write a short paragraph giving a geometric interpretation of the function \(F(x)\) relative to the function \(f(x)=\frac{2}{x^{2}+1}\) Use what you have written to guess the value of \(x\) that will make \(F\) maximum. (b) Perform the specified integration to find an alternative form of \(F(x)\). Use calculus to locate the value of \(x\) that will make \(F\) maximum and compare the result with your guess in part (a).
Find all the continuous positive functions \(f(x),\) for \(0 \leq x \leq\) such that \(\int_{0}^{1} f(x) d x=1, \int_{0}^{1} f(x) x d x=\alpha,\) and \(\int_{0}^{1} f(x) x^{2} d x=\alpha^{2}\) where \(\alpha\) is a real number
What do you think about this solution?
We value your feedback to improve our textbook solutions.