Chapter 4: Problem 4
Find the indefinite integral. $$ \int \frac{x^{2}}{3-x^{3}} d x $$
Chapter 4: Problem 4
Find the indefinite integral. $$ \int \frac{x^{2}}{3-x^{3}} d x $$
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the derivative of the function. \(y=2 x \sinh ^{-1}(2 x)-\sqrt{1+4 x^{2}}\)
Verify the differentiation formula. \(\frac{d}{d x}\left[\cosh ^{-1} x\right]=\frac{1}{\sqrt{x^{2}-1}}\)
Find the indefinite integral using the formulas of Theorem 4.24 \(\int \frac{1}{1-4 x-2 x^{2}} d x\)
Determine \(\lim _{n \rightarrow \infty} \frac{1}{n^{3}}\left[1^{2}+2^{2}+3^{2}+\cdots+n^{2}\right]\) by using an appropriate Riemann sum.
Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. $$ \int \frac{d x}{25+x^{2}}=\frac{1}{25} \arctan \frac{x}{25}+C $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.