Chapter 4: Problem 39
Find the integral. \(\int \cosh ^{2}(x-1) \sinh (x-1) d x\)
Chapter 4: Problem 39
Find the integral. \(\int \cosh ^{2}(x-1) \sinh (x-1) d x\)
All the tools & learning materials you need for study success - in one app.
Get started for freeVerify each rule by differentiating. Let \(a>0\). $$ \int \frac{d u}{\sqrt{a^{2}-u^{2}}}=\arcsin \frac{u}{a}+C $$
Show that if \(f\) is continuous on the entire real number line, then \(\int_{a}^{b} f(x+h) d x=\int_{a+h}^{b+h} f(x) d x\)
Evaluate the integral. \(\int_{0}^{\ln 2} 2 e^{-x} \cosh x d x\)
(a) Show that \(\int_{0}^{1} \frac{4}{1+x^{2}} d x=\pi\). (b) Approximate the number \(\pi\) using Simpson's Rule (with \(n=6\) ) and the integral in part (a). (c) Approximate the number \(\pi\) by using the integration capabilities of a graphing utility.
Think About It Determine whether the Dirichlet function $$f(x)=\left\\{\begin{array}{ll}1, & x \text { is rational } \\ 0, & x \text { is irrational }\end{array}\right.$$ is integrable on the interval [0,1] . Explain.
What do you think about this solution?
We value your feedback to improve our textbook solutions.