Chapter 4: Problem 36
In Exercises 31-36, evaluate the integral using the following values. $$\int_{2}^{4} x^{3} d x=60, \quad \int_{2}^{4} x d x=6, \quad \int_{2}^{4} d x=2$$ $$ \int_{2}^{4}\left(6+2 x-x^{3}\right) d x $$
Chapter 4: Problem 36
In Exercises 31-36, evaluate the integral using the following values. $$\int_{2}^{4} x^{3} d x=60, \quad \int_{2}^{4} x d x=6, \quad \int_{2}^{4} d x=2$$ $$ \int_{2}^{4}\left(6+2 x-x^{3}\right) d x $$
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the limit. \(\lim _{x \rightarrow 0} \frac{\sinh x}{x}\)
In Exercises \(73-78,\) use the Second Fundamental Theorem of Calculus to find \(F^{\prime}(x)\). $$ F(x)=\int_{-2}^{x}\left(t^{2}-2 t\right) d t $$
Find the derivative of the function.
\(y=\operatorname{sech}^{-1}(\cos 2 x), \quad 0
Find the derivative of the function. \(y=\tanh ^{-1}(\sin 2 x)\)
Verify the differentiation formula. \(\frac{d}{d x}\left[\cosh ^{-1} x\right]=\frac{1}{\sqrt{x^{2}-1}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.