Chapter 4: Problem 31
Use the specified substitution to find or evaluate the integral. $$ \begin{array}{l} \int \sqrt{e^{t}-3} d t \\ u=\sqrt{e^{t}-3} \end{array} $$
Chapter 4: Problem 31
Use the specified substitution to find or evaluate the integral. $$ \begin{array}{l} \int \sqrt{e^{t}-3} d t \\ u=\sqrt{e^{t}-3} \end{array} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeFind \(F^{\prime}(x)\). $$ F(x)=\int_{0}^{x^{3}} \sin t^{2} d t $$
Verify the differentiation formula. \(\frac{d}{d x}\left[\sinh ^{-1} x\right]=\frac{1}{\sqrt{x^{2}+1}}\)
Find \(F^{\prime}(x)\). $$ F(x)=\int_{2}^{x^{2}} \frac{1}{t^{3}} d t $$
Show that the function satisfies the differential equation. \(y=a \cosh x\) \(y^{\prime \prime}-y=0\)
Find the derivative of the function. \(y=\left(\operatorname{csch}^{-1} x\right)^{2}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.