Chapter 4: Problem 31
In Exercises 31-36, evaluate the integral using the following values. $$\int_{2}^{4} x^{3} d x=60, \quad \int_{2}^{4} x d x=6, \quad \int_{2}^{4} d x=2$$ $$ \int_{4}^{2} x d x $$
Chapter 4: Problem 31
In Exercises 31-36, evaluate the integral using the following values. $$\int_{2}^{4} x^{3} d x=60, \quad \int_{2}^{4} x d x=6, \quad \int_{2}^{4} d x=2$$ $$ \int_{4}^{2} x d x $$
All the tools & learning materials you need for study success - in one app.
Get started for freeVerify each rule by differentiating. Let \(a>0\). $$ \int \frac{d u}{a^{2}+u^{2}}=\frac{1}{a} \arctan \frac{u}{a}+C $$
Find the limit. \(\lim _{x \rightarrow 0} \frac{\sinh x}{x}\)
Find the derivative of the function. \(y=\sinh ^{-1}(\tan x)\)
Verify the differentiation formula. \(\frac{d}{d x}[\operatorname{sech} x]=-\operatorname{sech} x \tanh x\)
Use the Second Fundamental Theorem of Calculus to find \(F^{\prime}(x)\). $$ F(x)=\int_{0}^{x} \sec ^{3} t d t $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.