Chapter 4: Problem 3
Find the integral. $$ \int \frac{1}{x \sqrt{4 x^{2}-1}} d x $$
Chapter 4: Problem 3
Find the integral. $$ \int \frac{1}{x \sqrt{4 x^{2}-1}} d x $$
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. $$ \int \frac{d x}{25+x^{2}}=\frac{1}{25} \arctan \frac{x}{25}+C $$
Solve the differential equation. \(\frac{d y}{d x}=\frac{1}{(x-1) \sqrt{-4 x^{2}+8 x-1}}\)
Find the integral. \(\int \frac{x}{x^{4}+1} d x\)
(a) integrate to find \(F\) as a function of \(x\) and (b) demonstrate the Second Fundamental Theorem of Calculus by differentiating the result in part (a). $$ F(x)=\int_{4}^{x} \sqrt{t} d t $$
A model for a power cable suspended between two towers is given. (a) Graph the model, (b) find the heights of the cable at the towers and at the midpoint between the towers, and (c) find the slope of the model at the point where the cable meets the right-hand tower. \(y=18+25 \cosh \frac{x}{25}, \quad-25 \leq x \leq 25\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.