Chapter 4: Problem 29
The table lists several measurements gathered in an experiment to approximate an unknown continuous function \(y=f(x)\). (a) Approximate the integral \(\int_{0}^{2} f(x) d x\) using the Trapezoidal Rule and Simpson's Rule. \begin{tabular}{|c|c|c|c|c|c|} \hline\(x\) & 0.00 & 0.25 & 0.50 & 0.75 & 1.00 \\ \hline\(y\) & 4.32 & 4.36 & 4.58 & 5.79 & 6.14 \\ \hline \end{tabular} \begin{tabular}{|c|c|c|c|c|} \hline\(x\) & 1.25 & 1.50 & 1.75 & 2.00 \\ \hline\(y\) & 7.25 & 7.64 & 8.08 & 8.14 \\ \hline \end{tabular} (b) Use a graphing utility to find a model of the form \(y=a x^{3}+b x^{2}+c x+d\) for the data. Integrate the resulting polynomial over [0,2] and compare your result with your results in part (a).