Chapter 4: Problem 28
Find or evaluate the integral. (Complete the square, if necessary.) $$ \int \frac{1}{(x-1) \sqrt{x^{2}-2 x}} d x $$
Chapter 4: Problem 28
Find or evaluate the integral. (Complete the square, if necessary.) $$ \int \frac{1}{(x-1) \sqrt{x^{2}-2 x}} d x $$
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the derivative of the function. \(y=2 x \sinh ^{-1}(2 x)-\sqrt{1+4 x^{2}}\)
Let \(x>0\) and \(b>0 .\) Show that \(\int_{-b}^{b} e^{x t} d t=\frac{2 \sinh b x}{x}\).
Determine \(\lim _{n \rightarrow \infty} \frac{1}{n^{3}}\left[1^{2}+2^{2}+3^{2}+\cdots+n^{2}\right]\) by using an appropriate Riemann sum.
Linear and Quadratic Approximations In Exercises 33 and 34 use a computer algebra system to find the linear approximation \(P_{1}(x)=f(a)+f^{\prime}(a)(x-a)\) and the quadratic approximation \(P_{2}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}\) of the function \(f\) at \(x=a\). Use a graphing utility to graph the function and its linear and quadratic approximations. \(f(x)=\cosh x, \quad a=0\)
Find the indefinite integral using the formulas of Theorem 4.24 \(\int \frac{d x}{(x+2) \sqrt{x^{2}+4 x+8}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.