Chapter 4: Problem 26
Find or evaluate the integral. (Complete the square, if necessary.) $$ \int \frac{2}{\sqrt{-x^{2}+4 x}} d x $$
Chapter 4: Problem 26
Find or evaluate the integral. (Complete the square, if necessary.) $$ \int \frac{2}{\sqrt{-x^{2}+4 x}} d x $$
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. $$ \int \frac{d x}{25+x^{2}}=\frac{1}{25} \arctan \frac{x}{25}+C $$
(a) integrate to find \(F\) as a function of \(x\) and (b) demonstrate the Second Fundamental Theorem of Calculus by differentiating the result in part (a). $$ F(x)=\int_{4}^{x} \sqrt{t} d t $$
Find the integral. \(\int \operatorname{sech}^{2}(2 x-1) d x\)
Verify the differentiation formula. \(\frac{d}{d x}\left[\operatorname{sech}^{-1} x\right]=\frac{-1}{x \sqrt{1-x^{2}}}\)
Evaluate the integral in terms of (a) natural logarithms and (b) inverse hyperbolic functions. \(\int_{-1 / 2}^{1 / 2} \frac{d x}{1-x^{2}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.