Chapter 4: Problem 24
Find the indefinite integral. $$ \int(\sec t+\tan t) d t $$
Chapter 4: Problem 24
Find the indefinite integral. $$ \int(\sec t+\tan t) d t $$
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the integral. \(\int_{0}^{1} \cosh ^{2} x d x\)
If \(a_{0}, a_{1}, \ldots, a_{n}\) are real numbers satisfying \(\frac{a_{0}}{1}+\frac{a_{1}}{2}+\cdots+\frac{a_{n}}{n+1}=0\) show that the equation \(a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}=0\) has at least one real zero.
Evaluate the integral. \(\int_{0}^{\ln 2} 2 e^{-x} \cosh x d x\)
In Exercises \(53-60\), find the derivative of the function. \(y=\cosh ^{-1}(3 x)\)
Use the Second Fundamental Theorem of Calculus to find \(F^{\prime}(x)\). $$ F(x)=\int_{0}^{x} \sec ^{3} t d t $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.