Chapter 4: Problem 23
Find the indefinite integral. $$ \int \frac{\sec x \tan x}{\sec x-1} d x $$
Chapter 4: Problem 23
Find the indefinite integral. $$ \int \frac{\sec x \tan x}{\sec x-1} d x $$
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the limit. \(\lim _{x \rightarrow 0^{-}} \operatorname{coth} x\)
Use the Second Fundamental Theorem of Calculus to find \(F^{\prime}(x)\). $$ F(x)=\int_{0}^{x} t \cos t d t $$
Let \(x>0\) and \(b>0 .\) Show that \(\int_{-b}^{b} e^{x t} d t=\frac{2 \sinh b x}{x}\).
Find the derivative of the function. \(y=x \tanh ^{-1} x+\ln \sqrt{1-x^{2}}\)
Find the indefinite integral using the formulas of Theorem 4.24 \(\int \frac{d x}{(x+2) \sqrt{x^{2}+4 x+8}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.