Chapter 4: Problem 23
Evaluate the definite integral of the transcendental function. Use a graphing utility to verify your result. $$ \int_{-\pi / 3}^{\pi / 3} 4 \sec \theta \tan \theta d \theta $$
Chapter 4: Problem 23
Evaluate the definite integral of the transcendental function. Use a graphing utility to verify your result. $$ \int_{-\pi / 3}^{\pi / 3} 4 \sec \theta \tan \theta d \theta $$
All the tools & learning materials you need for study success - in one app.
Get started for freeUse the Second Fundamental Theorem of Calculus to find \(F^{\prime}(x)\). $$ F(x)=\int_{0}^{x} \sec ^{3} t d t $$
Verify the differentiation formula. \(\frac{d}{d x}\left[\operatorname{sech}^{-1} x\right]=\frac{-1}{x \sqrt{1-x^{2}}}\)
In Exercises \(73-78,\) use the Second Fundamental Theorem of Calculus to find \(F^{\prime}(x)\). $$ F(x)=\int_{-2}^{x}\left(t^{2}-2 t\right) d t $$
Evaluate the integral. \(\int_{0}^{4} \frac{1}{25-x^{2}} d x\)
Prove that \(\tanh ^{-1} x=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right),
\quad-1
What do you think about this solution?
We value your feedback to improve our textbook solutions.