Chapter 4: Problem 1
Find the integral. $$ \int \frac{5}{\sqrt{9-x^{2}}} d x $$
Chapter 4: Problem 1
Find the integral. $$ \int \frac{5}{\sqrt{9-x^{2}}} d x $$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises \(73-78,\) use the Second Fundamental Theorem of Calculus to find \(F^{\prime}(x)\). $$ F(x)=\int_{-2}^{x}\left(t^{2}-2 t\right) d t $$
Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. $$ \int \frac{d x}{3 x \sqrt{9 x^{2}-16}}=\frac{1}{4} \operatorname{arcsec} \frac{3 x}{4}+C $$
Verify the differentiation formula. \(\frac{d}{d x}\left[\cosh ^{-1} x\right]=\frac{1}{\sqrt{x^{2}-1}}\)
Find the derivative of the function. \(y=\tanh ^{-1}(\sin 2 x)\)
Evaluate the integral. \(\int_{0}^{\ln 2} 2 e^{-x} \cosh x d x\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.