Chapter 4: Problem 1
Find the indefinite integral. $$ \int \frac{5}{x} d x $$
Chapter 4: Problem 1
Find the indefinite integral. $$ \int \frac{5}{x} d x $$
All the tools & learning materials you need for study success - in one app.
Get started for freeUse the Second Fundamental Theorem of Calculus to find \(F^{\prime}(x)\). $$ F(x)=\int_{0}^{x} \sec ^{3} t d t $$
Find the integral. \(\int \operatorname{sech}^{2}(2 x-1) d x\)
In Exercises 83 and \(84,\) use the equation of the tractrix \(y=a \operatorname{sech}^{-1} \frac{x}{a}-\sqrt{a^{2}-x^{2}}, \quad a>0\) Find \(d y / d x\).
Find the derivative of the function. \(y=x \tanh ^{-1} x+\ln \sqrt{1-x^{2}}\)
In Exercises \(27-30,\) find any relative extrema of the function. Use a graphing utility to confirm your result. \(f(x)=\sin x \sinh x-\cos x \cosh x, \quad-4 \leq x \leq 4\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.