Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The function \(s(t)\) describes the motion of a particle moving along a line. For each function, (a) find the velocity function of the particle at any time \(t \geq 0\), (b) identify the time interval(s) when the particle is moving in a positive direction, (c) identify the time interval(s) when the particle is moving in a negative direction, and (d) identify the time(s) when the particle changes its direction. $$ s(t)=t^{2}-7 t+10 $$

Short Answer

Expert verified
The velocity function is \(v(t) = 2t - 7\). The particle is moving in a negative direction when \(t < 7/2\) and in a positive direction when \(t > 7/2\). The particle changes direction at \(t = 7/2\).

Step by step solution

01

Finding the Velocity Function

By calculating the derivative of the given motion function \(s(t)=t^{2}-7 t+10\), the velocity function can be obtained. The derivative is \( v(t) = 2t -7\), which describes the velocity of the particle at any time \(t\).
02

Determine Positive and Negative Direction

The particle moves in a positive direction when \(v(t)>0\) and in a negative direction when \(v(t)<0\). By setting \(v(t) = 0\), we find the critical value at \(t = 7/2\). Therefore, for \(t<7/2\), \(v(t)<0\), meaning the particle moves in a negative direction, and for \(t>7/2\), \(v(t)>0\), meaning the particle moves in a positive direction.
03

Identify Change of Direction

The particle changes direction at the points where \(v(t) = 0\), or when it does not exist. Since our \(v(t)\) exists for all \(t\), we only need to consider when \(v(t) = 0\). As calculated already, \(t = 7/2\) is the only time when the particle changes its direction.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The cross sections of an irrigation canal are isosceles trapezoids of which three sides are 8 feet long (see figure). Determine the angle of elevation \(\theta\) of the sides such that the area of the cross section is a maximum by completing the following. (a) Analytically complete six rows of a table such as the one below. (The first two rows are shown.) $$ \begin{array}{|c|c|c|c|} \hline \text { Base 1 } & \text { Base 2 } & \text { Altitude } & \text { Area } \\ \hline 8 & 8+16 \cos 10^{\circ} & 8 \sin 10^{\circ} & \approx 22.1 \\ \hline 8 & 8+16 \cos 20^{\circ} & 8 \sin 20^{\circ} & \approx 42.5 \\ \hline \end{array} $$ (b) Use a graphing utility to generate additional rows of the table and estimate the maximum cross-sectional area. (c) Write the cross-sectional area \(A\) as a function of \(\theta\). (d) Use calculus to find the critical number of the function in part (c) and find the angle that will yield the maximum cross-sectional area. (e) Use a graphing utility to graph the function in part (c) and verify the maximum cross-sectional area.

In Exercises \(75-86\), use a computer algebra system to analyze the graph of the function. Label any extrema and/or asymptotes that exist. $$ g(x)=\frac{2 x}{\sqrt{3 x^{2}+1}} $$

In Exercises \(57-74\), sketch the graph of the equation. Look for extrema, intercepts, symmetry, and asymptotes as necessary. Use a graphing utility to verify your result. $$ y=1+\frac{1}{x} $$

Assume that \(f\) is differentiable for all \(x\). The signs of \(f^{\prime}\) are as follows. \(f^{\prime}(x)>0\) on \((-\infty,-4)\) \(f^{\prime}(x)<0\) on (-4,6) \(f^{\prime}(x)>0\) on \((6, \infty)\) Supply the appropriate inequality for the indicated value of \(c\). $$ g(x)=-f(x) \quad g^{\prime}(0) $$

In Exercises 61 and 62, use a graphing utility to graph the function. Then graph the linear and quadratic approximations \(P_{1}(x)=f(a)+f^{\prime}(a)(x-a)\) and \(P_{2}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}\) in the same viewing window. Compare the values of \(f, P_{1},\) and \(P_{2}\) and their first derivatives at \(x=a .\) How do the approximations change as you move farther away from \(x=a\) ? \(\begin{array}{ll}\text { Function } & \frac{\text { Value of } a}{a} \\\ f(x)=2(\sin x+\cos x) & a=\frac{\pi}{4}\end{array}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free