Chapter 3: Problem 81
In Exercises \(75-86\), use a computer algebra system to analyze the graph of the function. Label any extrema and/or asymptotes that exist. $$ f(x)=\frac{3 x}{\sqrt{4 x^{2}+1}} $$
Chapter 3: Problem 81
In Exercises \(75-86\), use a computer algebra system to analyze the graph of the function. Label any extrema and/or asymptotes that exist. $$ f(x)=\frac{3 x}{\sqrt{4 x^{2}+1}} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeTimber Yield The yield \(V\) (in millions of cubic feet per acre) for a stand of timber at age \(t\) (in years) is \(V=7.1 e^{(-48.1) / t}\) (a) Find the limiting volume of wood per acre as \(t\) approaches infinity. (b) Find the rates at which the yield is changing when \(t=20\) years and \(t=60\) years.
Consider a fuel distribution center located at the origin of the rectangular coordinate system (units in miles; see figures). The center supplies three factories with coordinates \((4,1),(5,6),\) and \((10,3) .\) A trunk line will run from the distribution center along the line \(y=m x,\) and feeder lines will run to the three factories. The objective is to find \(m\) such that the lengths of the feeder lines are minimized. Minimize the sum of the squares of the lengths of vertical feeder lines given by \(S_{1}=(4 m-1)^{2}+(5 m-6)^{2}+(10 m-3)^{2}\) Find the equation for the trunk line by this method and then determine the sum of the lengths of the feeder lines.
Prove that \(|\cos a-\cos b| \leq|a-b|\) for all \(a\) and \(b\).
Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. The sum of two increasing functions is increasing.
In Exercises 87 and \(88,\) (a) use a graphing utility to graph \(f\) and \(g\) in the same viewing window, (b) verify algebraically that \(f\) and \(g\) represent the same function, and (c) zoom out sufficiently far so that the graph appears as a line. What equation does this line appear to have? (Note that the points at which the function is not continuous are not readily seen when you zoom out.) $$ \begin{array}{l} f(x)=-\frac{x^{3}-2 x^{2}+2}{2 x^{2}} \\ g(x)=-\frac{1}{2} x+1-\frac{1}{x^{2}} \end{array} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.