Chapter 3: Problem 80
In Exercises \(75-86\), use a computer algebra system to analyze the graph of the function. Label any extrema and/or asymptotes that exist. $$ f(x)=\frac{x+1}{x^{2}+x+1} $$
Chapter 3: Problem 80
In Exercises \(75-86\), use a computer algebra system to analyze the graph of the function. Label any extrema and/or asymptotes that exist. $$ f(x)=\frac{x+1}{x^{2}+x+1} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeThe deflection \(D\) of a beam of length \(L\) is \(D=2 x^{4}-5 L x^{3}+3 L^{2} x^{2},\) where \(x\) is the distance from one end of the beam. Find the value of \(x\) that yields the maximum deflection.
A section of highway connecting two hillsides with grades of \(6 \%\) and \(4 \%\) is to be built between two points that are separated by a horizontal distance of 2000 feet (see figure). At the point where the two hillsides come together, there is a 50 -foot difference in elevation. (a) Design a section of highway connecting the hillsides modeled by the function \(f(x)=a x^{3}+b x^{2}+c x+d\) \((-1000 \leq x \leq 1000)\). At the points \(A\) and \(B,\) the slope of the model must match the grade of the hillside. (b) Use a graphing utility to graph the model. (c) Use a graphing utility to graph the derivative of the model. (d) Determine the grade at the steepest part of the transitional section of the highway.
Timber Yield The yield \(V\) (in millions of cubic feet per acre) for a stand of timber at age \(t\) (in years) is \(V=7.1 e^{(-48.1) / t}\) (a) Find the limiting volume of wood per acre as \(t\) approaches infinity. (b) Find the rates at which the yield is changing when \(t=20\) years and \(t=60\) years.
Writing Consider the function \(f(x)=\frac{2}{1+e^{1 / x}}\) (a) Use a graphing utility to graph \(f\). (b) Write a short paragraph explaining why the graph has a horizontal asymptote at \(y=1\) and why the function has a nonremovable discontinuity at \(x=0\).
In Exercises \(57-74\), sketch the graph of the equation. Look for extrema, intercepts, symmetry, and asymptotes as necessary. Use a graphing utility to verify your result. $$ y=3+\frac{2}{x} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.