Chapter 3: Problem 77
In Exercises \(75-86\), use a computer algebra system to analyze the graph of the function. Label any extrema and/or asymptotes that exist. $$ f(x)=\frac{x}{x^{2}-4} $$
Chapter 3: Problem 77
In Exercises \(75-86\), use a computer algebra system to analyze the graph of the function. Label any extrema and/or asymptotes that exist. $$ f(x)=\frac{x}{x^{2}-4} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeSketch the graph of \(f(x)=2-2 \sin x\) on the interval \([0, \pi / 2]\) (a) Find the distance from the origin to the \(y\) -intercept and the distance from the origin to the \(x\) -intercept. (b) Write the distance \(d\) from the origin to a point on the graph of \(f\) as a function of \(x\). Use a graphing utility to graph \(d\) and find the minimum distance. (c) Use calculus and the zero or root feature of a graphing utility to find the value of \(x\) that minimizes the function \(d\) on the interval \([0, \pi / 2]\). What is the minimum distance? (Submitted by Tim Chapell, Penn Valley Community College, Kansas City, MO.)
Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. The graph of \(f(x)=1 / x\) is concave downward for \(x<0\) and concave upward for \(x>0\), and thus it has a point of inflection at \(x=0\)
In Exercises \(75-86\), use a computer algebra system to analyze the graph of the function. Label any extrema and/or asymptotes that exist. $$ f(x)=2+\left(x^{2}-3\right) e^{-x} $$
The function \(s(t)\) describes the motion of a particle moving along a line. For each function, (a) find the velocity function of the particle at any time \(t \geq 0\), (b) identify the time interval(s) when the particle is moving in a positive direction, (c) identify the time interval(s) when the particle is moving in a negative direction, and (d) identify the time(s) when the particle changes its direction. $$ s(t)=6 t-t^{2} $$
In Exercises 55 and \(56,\) find \(a, b, c,\) and \(d\) such that the cubic \(f(x)=a x^{3}+b x^{2}+c x+d\) satisfies the given conditions. Relative maximum: (3,3) Relative minimum: (5,1) Inflection point: (4,2)
What do you think about this solution?
We value your feedback to improve our textbook solutions.