Chapter 3: Problem 74
In Exercises \(57-74\), sketch the graph of the equation. Look for extrema, intercepts, symmetry, and asymptotes as necessary. Use a graphing utility to verify your result. $$ y=\frac{x}{\sqrt{x^{2}-4}} $$
Chapter 3: Problem 74
In Exercises \(57-74\), sketch the graph of the equation. Look for extrema, intercepts, symmetry, and asymptotes as necessary. Use a graphing utility to verify your result. $$ y=\frac{x}{\sqrt{x^{2}-4}} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeUse symmetry, extrema, and zeros to sketch the graph of \(f .\) How do the functions \(f\) and \(g\) differ? Explain. $$ f(t)=\cos ^{2} t-\sin ^{2} t, \quad g(t)=1-2 \sin ^{2} t, \quad(-2,2) $$
Numerical, Graphical, and Analytic Analysis The concentration \(C\) of a chemical in the bloodstream \(t\) hours after injection into muscle tissue is \(C(t)=\frac{3 t}{27+t^{3}}, \quad t \geq 0\) (a) Complete the table and use it to approximate the time when the concentration is greatest. $$ \begin{array}{|l|l|l|l|l|l|l|l|} \hline t & 0 & 0.5 & 1 & 1.5 & 2 & 2.5 & 3 \\ \hline \boldsymbol{C}(\boldsymbol{t}) & & & & & & & \\ \hline \end{array} $$ (b) Use a graphing utility to graph the concentration function and use the graph to approximate the time when the concentration is greatest. (c) Use calculus to determine analytically the time when the concentration is greatest.
Find the maximum value of \(f(x)=x^{3}-3 x\) on the set of all real numbers \(x\) satisfying \(x^{4}+36 \leq 13 x^{2}\). Explain your reasoning.
In Exercises 71 and \(72,\) let \(f\) and \(g\) represent differentiable functions such that \(f^{\prime \prime} \neq 0\) and \(g^{\prime \prime} \neq 0\). Show that if \(f\) and \(g\) are concave upward on the interval \((a, b)\), then \(f+g\) is also concave upward on \((a, b)\).
The function \(s(t)\) describes the motion of a particle moving along a line. For each function, (a) find the velocity function of the particle at any time \(t \geq 0\), (b) identify the time interval(s) when the particle is moving in a positive direction, (c) identify the time interval(s) when the particle is moving in a negative direction, and (d) identify the time(s) when the particle changes its direction. $$ s(t)=t^{3}-5 t^{2}+4 t $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.