Chapter 3: Problem 72
In Exercises \(57-74\), sketch the graph of the equation. Look for extrema, intercepts, symmetry, and asymptotes as necessary. Use a graphing utility to verify your result. $$ y=4\left(1-\frac{1}{x^{2}}\right) $$
Chapter 3: Problem 72
In Exercises \(57-74\), sketch the graph of the equation. Look for extrema, intercepts, symmetry, and asymptotes as necessary. Use a graphing utility to verify your result. $$ y=4\left(1-\frac{1}{x^{2}}\right) $$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises \(75-86\), use a computer algebra system to analyze the graph of the function. Label any extrema and/or asymptotes that exist. $$ f(x)=2+\left(x^{2}-3\right) e^{-x} $$
In Exercises \(57-74\), sketch the graph of the equation. Look for extrema, intercepts, symmetry, and asymptotes as necessary. Use a graphing utility to verify your result. $$ y=\frac{x^{2}}{x^{2}-9} $$
Verify that the function \(y=\frac{L}{1+a e^{-x / b}}, \quad a>0, b>0, L>0\) increases at the maximum rate when \(y=L / 2\).
Sketch the graph of \(f(x)=2-2 \sin x\) on the interval \([0, \pi / 2]\) (a) Find the distance from the origin to the \(y\) -intercept and the distance from the origin to the \(x\) -intercept. (b) Write the distance \(d\) from the origin to a point on the graph of \(f\) as a function of \(x\). Use a graphing utility to graph \(d\) and find the minimum distance. (c) Use calculus and the zero or root feature of a graphing utility to find the value of \(x\) that minimizes the function \(d\) on the interval \([0, \pi / 2]\). What is the minimum distance? (Submitted by Tim Chapell, Penn Valley Community College, Kansas City, MO.)
In Exercises \(75-86\), use a computer algebra system to analyze the graph of the function. Label any extrema and/or asymptotes that exist. $$ f(x)=\frac{2 \sin 2 x}{x} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.