Chapter 3: Problem 68
In Exercises \(57-74\), sketch the graph of the equation. Look for extrema, intercepts, symmetry, and asymptotes as necessary. Use a graphing utility to verify your result. $$ y=\frac{2 x}{1-x^{2}} $$
Chapter 3: Problem 68
In Exercises \(57-74\), sketch the graph of the equation. Look for extrema, intercepts, symmetry, and asymptotes as necessary. Use a graphing utility to verify your result. $$ y=\frac{2 x}{1-x^{2}} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeShow that the point of inflection of \(f(x)=x(x-6)^{2}\) lies midway between the relative extrema of \(f\).
Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. If the graph of a polynomial function has three \(x\) -intercepts, then it must have at least two points at which its tangent line is horizontal.
In Exercises \(57-74\), sketch the graph of the equation. Look for extrema, intercepts, symmetry, and asymptotes as necessary. Use a graphing utility to verify your result. $$ y=1+\frac{1}{x} $$
In Exercises \(75-86\), use a computer algebra system to analyze the graph of the function. Label any extrema and/or asymptotes that exist. $$ f(x)=\frac{1}{x^{2}-x-2} $$
In Exercises \(101-104,\) use the definition of limits at infinity to prove the limit. $$ \lim _{x \rightarrow \infty} \frac{2}{\sqrt{x}}=0 $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.