Chapter 3: Problem 63
Chapter 3: Problem 63
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(f\) and \(g\) represent differentiable functions such that \(f^{\prime \prime} \neq 0\) and \(g^{\prime \prime} \neq 0\). Prove that if \(f\) and \(g\) are positive, increasing, and concave upward on the interval \((a, b),\) then \(f g\) is also concave upward on \((a, b)\).
Assume that \(f\) is differentiable for all \(x\). The signs of \(f^{\prime}\) are as follows. \(f^{\prime}(x)>0\) on \((-\infty,-4)\) \(f^{\prime}(x)<0\) on (-4,6) \(f^{\prime}(x)>0\) on \((6, \infty)\) Supply the appropriate inequality for the indicated value of \(c\). $$ g(x)=f(x)+5 \quad g^{\prime}(0) $$
Consider the functions \(f(x)=\frac{1}{2} x^{2}\) and \(g(x)=\frac{1}{16} x^{4}-\frac{1}{2} x^{2}\) on the domain [0,4] . (a) Use a graphing utility to graph the functions on the specified domain. (b) Write the vertical distance \(d\) between the functions as a function of \(x\) and use calculus to find the value of \(x\) for which \(d\) is maximum. (c) Find the equations of the tangent lines to the graphs of \(f\) and \(g\) at the critical number found in part (b). Graph the tangent lines. What is the relationship between the lines? (d) Make a conjecture about the relationship between tangent lines to the graphs of two functions at the value of \(x\) at which the vertical distance between the functions is greatest, and prove your conjecture.
(a) Let \(f(x)=x^{2}\) and \(g(x)=-x^{3}+x^{2}+3 x+2 .\) Then \(f(-1)=g(-1)\) and \(f(2)=g(2) .\) Show that there is at least one value \(c\) in the interval (-1,2) where the tangent line to \(f\) at \((c, f(c))\) is parallel to the tangent line to \(g\) at \((c, g(c)) .\) Identify \(c .\) (b) Let \(f\) and \(g\) be differentiable functions on \([a, b]\) where \(f(a)=g(a)\) and \(f(b)=g(b) .\) Show that there is at least one value \(c\) in the interval \((a, b)\) where the tangent line to \(f\) at \((c, f(c))\) is parallel to the tangent line to \(g\) at \((c, g(c))\).
The profit \(P\) (in thousands of dollars) for a company spending an amount \(s\) (in thousands of dollars) on advertising is \(P=-\frac{1}{10} s^{3}+6 s^{2}+400\) (a) Find the amount of money the company should spend on advertising in order to obtain a maximum profit. (b) The point of diminishing returns is the point at which the rate of growth of the profit function begins to decline. Find the point of diminishing returns.
What do you think about this solution?
We value your feedback to improve our textbook solutions.