Chapter 3: Problem 63
In Exercises \(57-74\), sketch the graph of the equation. Look for extrema, intercepts, symmetry, and asymptotes as necessary. Use a graphing utility to verify your result. $$ y=\frac{2 x^{2}}{x^{2}-4} $$
Chapter 3: Problem 63
In Exercises \(57-74\), sketch the graph of the equation. Look for extrema, intercepts, symmetry, and asymptotes as necessary. Use a graphing utility to verify your result. $$ y=\frac{2 x^{2}}{x^{2}-4} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises \(75-86\), use a computer algebra system to analyze the graph of the function. Label any extrema and/or asymptotes that exist. $$ f(x)=\frac{2 \sin 2 x}{x} $$
A ball bearing is placed on an inclined plane and begins to roll. The angle of elevation of the plane is \(\theta .\) The distance (in meters) the ball bearing rolls in \(t\) seconds is \(s(t)=4.9(\sin \theta) t^{2}\) (a) Determine the speed of the ball bearing after \(t\) seconds. (b) Complete the table and use it to determine the value of \(\theta\) that produces the maximum speed at a particular time. $$ \begin{array}{|l|l|l|l|l|l|l|l|} \hline \boldsymbol{\theta} & 0 & \pi / 4 & \pi / 3 & \pi / 2 & 2 \pi / 3 & 3 \pi / 4 & \pi \\ \hline \boldsymbol{s}^{\prime}(\boldsymbol{t}) & & & & & & & \\ \hline \end{array} $$
In Exercises \(57-74\), sketch the graph of the equation. Look for extrema, intercepts, symmetry, and asymptotes as necessary. Use a graphing utility to verify your result. $$ y=\frac{x}{\sqrt{x^{2}-4}} $$
In Exercises \(101-104,\) use the definition of limits at infinity to prove the limit. $$ \lim _{x \rightarrow-\infty} \frac{1}{x-2}=0 $$
Find the area of the largest rectangle that can be inscribed under the curve \(y=e^{-x^{2}}\) in the first and second quadrants.
What do you think about this solution?
We value your feedback to improve our textbook solutions.