Chapter 3: Problem 58
In Exercises \(57-74\), sketch the graph of the equation. Look for extrema, intercepts, symmetry, and asymptotes as necessary. Use a graphing utility to verify your result. $$ y=\frac{x-3}{x-2} $$
Chapter 3: Problem 58
In Exercises \(57-74\), sketch the graph of the equation. Look for extrema, intercepts, symmetry, and asymptotes as necessary. Use a graphing utility to verify your result. $$ y=\frac{x-3}{x-2} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider \(\lim _{x \rightarrow \infty} \frac{3 x}{\sqrt{x^{2}+3}}\). Use the definition of limits at infinity to find values of \(M\) that correspond to (a) \(\varepsilon=0.5\) and (b) \(\varepsilon=0.1\).
The function \(f\) is differentiable on the interval [-1,1] . The table shows the values of \(f^{\prime}\) for selected values of \(x\). Sketch the graph of \(f\), approximate the critical numbers, and identify the relative extrema. $$\begin{array}{|l|c|c|c|c|} \hline x & -1 & -0.75 & -0.50 & -0.25 \\ \hline f^{\prime}(x) & -10 & -3.2 & -0.5 & 0.8 \\ \hline \end{array}$$ $$\begin{array}{|l|l|l|l|l|l|} \hline \boldsymbol{x} & 0 & 0.25 & 0.50 & 0.75 & 1 \\ \hline \boldsymbol{f}^{\prime}(\boldsymbol{x}) & 5.6 & 3.6 & -0.2 & -6.7 & -20.1 \\ \hline \end{array}$$
Verify that the function \(y=\frac{L}{1+a e^{-x / b}}, \quad a>0, b>0, L>0\) increases at the maximum rate when \(y=L / 2\).
Writing Consider the function \(f(x)=\frac{2}{1+e^{1 / x}}\) (a) Use a graphing utility to graph \(f\). (b) Write a short paragraph explaining why the graph has a horizontal asymptote at \(y=1\) and why the function has a nonremovable discontinuity at \(x=0\).
In Exercises \(57-74\), sketch the graph of the equation. Look for extrema, intercepts, symmetry, and asymptotes as necessary. Use a graphing utility to verify your result. $$ y=4\left(1-\frac{1}{x^{2}}\right) $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.