Chapter 3: Problem 56
Find \(a, b, c,\) and \(d\) such that the cubic \(f(x)=a x^{3}+b x^{2}+c x+d\) satisfies the given conditions. Relative maximum: (2,4) Relative minimum: (4,2) Inflection point: (3,3)
Chapter 3: Problem 56
Find \(a, b, c,\) and \(d\) such that the cubic \(f(x)=a x^{3}+b x^{2}+c x+d\) satisfies the given conditions. Relative maximum: (2,4) Relative minimum: (4,2) Inflection point: (3,3)
All the tools & learning materials you need for study success - in one app.
Get started for freeUse a graphing utility to graph the function. Then graph the linear and quadratic approximations \(P_{1}(x)=f(a)+f^{\prime}(a)(x-a)\) and \(P_{2}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}\) in the same viewing window. Compare the values of \(f, P_{1},\) and \(P_{2}\) and their first derivatives at \(x=a .\) How do the approximations change as you move farther away from \(x=a\) ? \(\begin{array}{ll}\text { Function } & \frac{\text { Value of } a}{a} \\\ f(x)=\arctan x & a=-1\end{array}\)
Numerical, Graphical, and Analytic Analysis The concentration \(C\) of a chemical in the bloodstream \(t\) hours after injection into muscle tissue is \(C(t)=\frac{3 t}{27+t^{3}}, \quad t \geq 0\) (a) Complete the table and use it to approximate the time when the concentration is greatest. $$ \begin{array}{|l|l|l|l|l|l|l|l|} \hline t & 0 & 0.5 & 1 & 1.5 & 2 & 2.5 & 3 \\ \hline \boldsymbol{C}(\boldsymbol{t}) & & & & & & & \\ \hline \end{array} $$ (b) Use a graphing utility to graph the concentration function and use the graph to approximate the time when the concentration is greatest. (c) Use calculus to determine analytically the time when the concentration is greatest.
In Exercises \(57-74\), sketch the graph of the equation. Look for extrema, intercepts, symmetry, and asymptotes as necessary. Use a graphing utility to verify your result. $$ y=\frac{x^{3}}{\sqrt{x^{2}-4}} $$
The range \(R\) of a projectile fired with an initial velocity \(v_{0}\) at an angle \(\theta\) with the horizontal is \(R=\frac{v_{0}^{2} \sin 2 \theta}{g},\) where \(g\) is the acceleration due to gravity. Find the angle \(\theta\) such that the range is a maximum.
In Exercises \(57-74\), sketch the graph of the equation. Look for extrema, intercepts, symmetry, and asymptotes as necessary. Use a graphing utility to verify your result. $$ y=\frac{x^{2}}{x^{2}-9} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.