Chapter 3: Problem 55
Verify that the function \(y=\frac{L}{1+a e^{-x / b}}, \quad a>0, b>0, L>0\) increases at the maximum rate when \(y=L / 2\).
Chapter 3: Problem 55
Verify that the function \(y=\frac{L}{1+a e^{-x / b}}, \quad a>0, b>0, L>0\) increases at the maximum rate when \(y=L / 2\).
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises 87 and \(88,\) (a) use a graphing utility to graph \(f\) and \(g\) in the same viewing window, (b) verify algebraically that \(f\) and \(g\) represent the same function, and (c) zoom out sufficiently far so that the graph appears as a line. What equation does this line appear to have? (Note that the points at which the function is not continuous are not readily seen when you zoom out.) $$ \begin{array}{l} f(x)=\frac{x^{3}-3 x^{2}+2}{x(x-3)} \\ g(x)=x+\frac{2}{x(x-3)} \end{array} $$
In Exercises \(75-86\), use a computer algebra system to analyze the graph of the function. Label any extrema and/or asymptotes that exist. $$ f(x)=\frac{2 \sin 2 x}{x} $$
The profit \(P\) (in thousands of dollars) for a company spending an amount \(s\) (in thousands of dollars) on advertising is \(P=-\frac{1}{10} s^{3}+6 s^{2}+400\) (a) Find the amount of money the company should spend on advertising in order to obtain a maximum profit. (b) The point of diminishing returns is the point at which the rate of growth of the profit function begins to decline. Find the point of diminishing returns.
Use a graphing utility to graph the function. Then graph the linear and quadratic approximations \(P_{1}(x)=f(a)+f^{\prime}(a)(x-a)\) and \(P_{2}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}\) in the same viewing window. Compare the values of \(f, P_{1},\) and \(P_{2}\) and their first derivatives at \(x=a .\) How do the approximations change as you move farther away from \(x=a\) ? \(\begin{array}{ll}\text { Function } & \frac{\text { Value of } a}{a} \\\ f(x)=\arctan x & a=-1\end{array}\)
Assume that \(f\) is differentiable for all \(x\). The signs of \(f^{\prime}\) are as follows. \(f^{\prime}(x)>0\) on \((-\infty,-4)\) \(f^{\prime}(x)<0\) on (-4,6) \(f^{\prime}(x)>0\) on \((6, \infty)\) Supply the appropriate inequality for the indicated value of \(c\). $$ g(x)=f(x-10) \quad g^{\prime}(0) \quad 0 $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.