Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

True or False? In Exercises \(53-56,\) determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. The maximum of a function that is continuous on a closed interval can occur at two different values in the interval.

Short Answer

Expert verified
The statement is True. A function continuous on a closed interval can have a maximum occurring at two different values.

Step by step solution

01

Understand the problem

The problem statement is asking if the maximum of a function that is continuous on a closed interval can occur at two different values within the interval. This is about determining the maximum value of a function, which in many cases only occurs at one point. But could there be exceptions?
02

Consider the extremes

Consider the extremal values of a function. Should we consider a function like \(f(x) = x^{2}\), for example, the maximum would be at just a single value. However, for a function like \(f(x) = -x^{2}\), on the closed interval [-1,1], the maximum would be at two different points, i.e., x= -1 and x= 1. Therefore an exception may exist.
03

Make a Conclusion

Based on the understanding of continuous functions on a closed interval, we may conclude that the maximum of such a function can indeed occur at more than one value within the interval. Hence the statement is True.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Assume that \(f\) is differentiable for all \(x\). The signs of \(f^{\prime}\) are as follows. \(f^{\prime}(x)>0\) on \((-\infty,-4)\) \(f^{\prime}(x)<0\) on (-4,6) \(f^{\prime}(x)>0\) on \((6, \infty)\) Supply the appropriate inequality for the indicated value of \(c\). $$ g(x)=3 f(x)-3 \quad g^{\prime}(-5) \quad 0 $$

In Exercises \(57-74\), sketch the graph of the equation. Look for extrema, intercepts, symmetry, and asymptotes as necessary. Use a graphing utility to verify your result. $$ y=2-\frac{3}{x^{2}} $$

In Exercises \(75-86\), use a computer algebra system to analyze the graph of the function. Label any extrema and/or asymptotes that exist. $$ g(x)=\sin \left(\frac{x}{x-2}\right), \quad x>3 $$

Consider a fuel distribution center located at the origin of the rectangular coordinate system (units in miles; see figures). The center supplies three factories with coordinates \((4,1),(5,6),\) and \((10,3) .\) A trunk line will run from the distribution center along the line \(y=m x,\) and feeder lines will run to the three factories. The objective is to find \(m\) such that the lengths of the feeder lines are minimized. Minimize the sum of the absolute values of the lengths of vertical feeder lines given by \(S_{2}=|4 m-1|+|5 m-6|+|10 m-3|\) Find the equation for the trunk line by this method and then determine the sum of the lengths of the feeder lines.

Sketch the graph of the arbitrary function \(f\) such that \(f^{\prime}(x)\left\\{\begin{array}{ll}>0, & x<4 \\ \text { undefined, } & x=4 \\ <0, & x>4\end{array}\right.\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free