Chapter 3: Problem 52
Sketch the graph of a function \(f\) having the given characteristics. \(f(0)=f(2)=0\) \(f(3)\) is defined. $$ f^{\prime}(x)>0 \text { if } x<1 $$ $$ \begin{array}{ll} f^{\prime}(x)<0 \text { if } x<3 & f^{\prime}(1)=0 \\ f^{\prime}(3) \text { does not exist. } & f^{\prime}(x)<0 \text { if } x>1 \end{array} $$ $$ \begin{array}{ll} f^{\prime}(x)>0 \text { if } x>3 & f^{\prime \prime}(x)<0 \\ f^{\prime \prime}(x)<0, x \neq 3 & \end{array} $$ 51\. \(f(2)=f(4)=0\) \(f(3)\) is defined. \(f^{\prime}(x)<0\) if \(x<3\) \(f^{\prime}(3)\) does not exist. \(f^{\prime}(x)>0\) if \(x>3\) \(f^{\prime \prime}(x)<0, x \neq 3\) 52\. \(f(0)=f(2)=0\) \(f^{\prime}(x)>0\) if \(x<1\) \(f^{\prime}(1)=0\) \(f^{\prime}(x)<0\) if \(x>1\) \(f^{\prime \prime}(x)<0\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.