Chapter 3: Problem 5
In Exercises 5 and \(6,\) use the information to evaluate and compare \(\Delta y\) and \(d y\). $$ y=\frac{1}{2} x^{3} \quad x=2 \quad \Delta x=d x=0.1 $$
Chapter 3: Problem 5
In Exercises 5 and \(6,\) use the information to evaluate and compare \(\Delta y\) and \(d y\). $$ y=\frac{1}{2} x^{3} \quad x=2 \quad \Delta x=d x=0.1 $$
All the tools & learning materials you need for study success - in one app.
Get started for freeWriting Consider the function \(f(x)=\frac{2}{1+e^{1 / x}}\) (a) Use a graphing utility to graph \(f\). (b) Write a short paragraph explaining why the graph has a horizontal asymptote at \(y=1\) and why the function has a nonremovable discontinuity at \(x=0\).
The function \(s(t)\) describes the motion of a particle moving along a line. For each function, (a) find the velocity function of the particle at any time \(t \geq 0\), (b) identify the time interval(s) when the particle is moving in a positive direction, (c) identify the time interval(s) when the particle is moving in a negative direction, and (d) identify the time(s) when the particle changes its direction. $$ s(t)=6 t-t^{2} $$
In Exercises \(57-74\), sketch the graph of the equation. Look for extrema, intercepts, symmetry, and asymptotes as necessary. Use a graphing utility to verify your result. $$ y=\frac{2 x^{2}}{x^{2}-4} $$
In Exercises 87 and \(88,\) (a) use a graphing utility to graph \(f\) and \(g\) in the same viewing window, (b) verify algebraically that \(f\) and \(g\) represent the same function, and (c) zoom out sufficiently far so that the graph appears as a line. What equation does this line appear to have? (Note that the points at which the function is not continuous are not readily seen when you zoom out.) $$ \begin{array}{l} f(x)=\frac{x^{3}-3 x^{2}+2}{x(x-3)} \\ g(x)=x+\frac{2}{x(x-3)} \end{array} $$
In Exercises \(57-74\), sketch the graph of the equation. Look for extrema, intercepts, symmetry, and asymptotes as necessary. Use a graphing utility to verify your result. $$ x y^{2}=4 $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.