Chapter 3: Problem 11
Find the points of inflection and discuss the concavity of the graph of the function. \(f(x)=x(x-4)^{3}\)
Chapter 3: Problem 11
Find the points of inflection and discuss the concavity of the graph of the function. \(f(x)=x(x-4)^{3}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeProve that \(|\cos a-\cos b| \leq|a-b|\) for all \(a\) and \(b\).
Find the minimum value of \(\frac{(x+1 / x)^{6}-\left(x^{6}+1 / x^{6}\right)-2}{(x+1 / x)^{3}+\left(x^{3}+1 / x^{3}\right)}\) for \(x>0\)
In Exercises 61 and 62, use a graphing utility to graph the function. Then graph the linear and quadratic approximations \(P_{1}(x)=f(a)+f^{\prime}(a)(x-a)\) and \(P_{2}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}\) in the same viewing window. Compare the values of \(f, P_{1},\) and \(P_{2}\) and their first derivatives at \(x=a .\) How do the approximations change as you move farther away from \(x=a\) ? \(\begin{array}{ll}\text { Function } & \frac{\text { Value of } a}{a} \\\ f(x)=2(\sin x+\cos x) & a=\frac{\pi}{4}\end{array}\)
Physics Newton's First Law of Motion and Einstein's Special Theory of Relativity differ concerning a particle's behavior as its velocity approaches the speed of light \(c\). Functions \(N\) and \(E\) represent the predicted velocity \(v\) with respect to time \(t\) for a particle accelerated by a constant force. Write a limit statement that describes each theory.
The profit \(P\) (in thousands of dollars) for a company spending an amount \(s\) (in thousands of dollars) on advertising is \(P=-\frac{1}{10} s^{3}+6 s^{2}+400\) (a) Find the amount of money the company should spend on advertising in order to obtain a maximum profit. (b) The point of diminishing returns is the point at which the rate of growth of the profit function begins to decline. Find the point of diminishing returns.
What do you think about this solution?
We value your feedback to improve our textbook solutions.