Chapter 3: Problem 100
Consider \(\lim _{x \rightarrow-\infty} \frac{3 x}{\sqrt{x^{2}+3}}\). Use the definition of limits at infinity to find values of \(N\) that correspond to (a) \(\varepsilon=0.5\) and (b) \(\varepsilon=0.1\).
Chapter 3: Problem 100
Consider \(\lim _{x \rightarrow-\infty} \frac{3 x}{\sqrt{x^{2}+3}}\). Use the definition of limits at infinity to find values of \(N\) that correspond to (a) \(\varepsilon=0.5\) and (b) \(\varepsilon=0.1\).
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises \(57-74\), sketch the graph of the equation. Look for extrema, intercepts, symmetry, and asymptotes as necessary. Use a graphing utility to verify your result. $$ y=\frac{x}{\sqrt{x^{2}-4}} $$
Assume that \(f\) is differentiable for all \(x\). The signs of \(f^{\prime}\) are as follows. \(f^{\prime}(x)>0\) on \((-\infty,-4)\) \(f^{\prime}(x)<0\) on (-4,6) \(f^{\prime}(x)>0\) on \((6, \infty)\) Supply the appropriate inequality for the indicated value of \(c\). $$ g(x)=-f(x) \quad g^{\prime}(-6) \quad 0 $$
Assume that \(f\) is differentiable for all \(x\). The signs of \(f^{\prime}\) are as follows. \(f^{\prime}(x)>0\) on \((-\infty,-4)\) \(f^{\prime}(x)<0\) on (-4,6) \(f^{\prime}(x)>0\) on \((6, \infty)\) Supply the appropriate inequality for the indicated value of \(c\). $$ g(x)=f(x-10) \quad g^{\prime}(0) \quad 0 $$
Use the definitions of increasing and decreasing functions to prove that \(f(x)=1 / x\) is decreasing on \((0, \infty)\).
A light source is located over the center of a circular table of diameter 4 feet (see figure). Find the height \(h\) of the light source such that the illumination \(I\) at the perimeter of the table is maximum if \(I=k(\sin \alpha) / s^{2},\) where \(s\) is the slant height, \(\alpha\) is the angle at which the light strikes the table, and \(k\) is a constant.
What do you think about this solution?
We value your feedback to improve our textbook solutions.