Chapter 2: Problem 97
Where are the functions \(f_{1}(x)=|\sin x|\) and \(f_{2}(x)=\sin |x|\) differentiable?
Chapter 2: Problem 97
Where are the functions \(f_{1}(x)=|\sin x|\) and \(f_{2}(x)=\sin |x|\) differentiable?
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises \(75-80\), evaluate the derivative of the function at the indicated point. Use a graphing utility to verify your result. \(\frac{\text { Function }}{f(x)=\frac{3}{x^{3}-4}} \quad \frac{\text { Point }}{\left(-1,-\frac{3}{5}\right)}\)
In Exercises \(81-88\), (a) find an equation of the tangent line to the graph of \(f\) at the indicated point, (b) use a graphing utility to graph the function and its tangent line at the point, and (c) use the derivative feature of a graphing utility to confirm your results. \(\frac{\text { Function }}{y=2 e^{1-x^{2}}} \quad \frac{\text { Point }}{\left(1,2\right)}\)
In Exercises 15-28, find the derivative of the function. $$ y=x \arctan 2 x-\frac{1}{4} \ln \left(1+4 x^{2}\right) $$
Let \(f\) be a differentiable function of period \(p\). (a) Is the function \(f^{\prime}\) periodic? Verify your answer. (b) Consider the function \(g(x)=f(2 x)\). Is the function \(g^{\prime}(x)\) periodic? Verify your answer.
The displacement from equilibrium of an object in harmonic motion on the end of a spring is \(y=\frac{1}{3} \cos 12 t-\frac{1}{4} \sin 12 t\) where \(y\) is measured in feet and \(t\) is the time in seconds. Determine the position and velocity of the object when \(t=\pi / 8\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.