Chapter 2: Problem 88
The area of a square with sides of length \(s\) is given by \(A=s^{2} .\) Find the rate of change of the area with respect to \(s\) when \(s=4\) meters.
Chapter 2: Problem 88
The area of a square with sides of length \(s\) is given by \(A=s^{2} .\) Find the rate of change of the area with respect to \(s\) when \(s=4\) meters.
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \((a, b)\) be an arbitrary point on the graph of \(y=1 / x, x>0\). Prove that the area of the triangle formed by the tangent line through \((a, b)\) and the coordinate axes is 2.
(a) Show that the derivative of an odd function is even. That is, if \(f(-x)=-f(x),\) then \(f^{\prime}(-x)=f^{\prime}(x)\) (b) Show that the derivative of an even function is odd. That is, if \(f(-x)=f(x),\) then \(f^{\prime}(-x)=-f^{\prime}(x)\)
Find the derivative of the function. \(f(t)=t^{3 / 2} \log _{2} \sqrt{t+1}\)
Let \(L\) be any tangent line to the curve \(\sqrt{x}+\sqrt{y}=\sqrt{c}\). Show that the sum of the \(x\) - and \(y\) -intercepts of \(L\) is \(c\).
Use the position function \(s(t)=-16 t^{2}+v_{0} t+s_{0}\) for free-falling objects. A silver dollar is dropped from the top of a building that is 1362 feet tall. (a) Determine the position and velocity functions for the coin. (b) Determine the average velocity on the interval [1,2] . (c) Find the instantaneous velocities when \(t=1\) and \(t=2\). (d) Find the time required for the coin to reach ground level. (e) Find the velocity of the coin at impact.
What do you think about this solution?
We value your feedback to improve our textbook solutions.